Kinetics of Thermal Degradation of Poly(*p*-phenylene benzobisoxazole)

Heng Lin, Qixin Zhuang, Jianjun Cheng, Zitao Liu, Zhewen Han

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China

Received 25 March 2006; accepted 29 September 2006 DOI 10.1002/app.25584 Published online in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: The kinetics of thermal degradation of poly (*p*-phenylen benzobisoxazole) (PBO) were studied by thermogravimetric analysis (TG) in dynamic nitrogen gas at four different heating rates: 5, 10, 15, 20°C/min. The activation energy calculated by Kissinger Method was 352.19 kJ/mol, and the mean value of activation energies evaluated by Flynn-Wall-Ozawa Method was 338.32 kJ/mol. The degradation kinetic model of PBO followed the mechanism of random scission of weak bonds of PBO molecule and impact of the active

INTRODUCTION

Poly(*p*-phenylene benzobisoxzaole) (PBO) (Fig. 1) is one of the most widely studied PBZ-type heterocyclic aromatic polymers, which is a family of high- performance materials with excellent chemical performance and thermal stability, and its commercial production started in 1998. During the past two decades, extensive reports have been published on its synthesis, fiber spinning, and ultra-high performances.^{1–4}

In addition to its advantageous mechanical properties, PBO also reveals an outstanding thermal stability. Because the thermal stability is one of the most important properties for polymer, the thermal stability and degradation kinetics of PBO may be vital to its production and application.

In some Refs. 5–9 the pyrolysis reaction of PBO has been reported using thermogravimetric analysis (TG), differential thermal analysis (DTA), mass spectrometry (MS), and other experiments. The results showed that the components evolved from TG at elevated temperature were CO_2 , H_2O , benzonitrile, dicyanobenzene, and so on, and the dominating reactions of PBO degradation were homolytic scission of a single bond and decomposition of a heterocyclic ring to produce an aromatic nitrile. Also the thermal degradation mechanism and kinetic parameters of PBO have been reported in some articles,^{6,8} but there have not

Correspondence to: Q. Zhuang (717zhuang@163.com).

Journal of Applied Polymer Science, Vol. 103, 3675–3679 (2007) ©2006 Wiley Periodicals, Inc.

WWILEY InterScience® groups obtained from the broken bonds, Mampel Power equation with integral form $G(\alpha) = \alpha^{3/2}$ and differential form $f(\alpha) = \frac{2}{3}\alpha^{-1/2}$. And the mathematical equation of kinetic compensation effect was $\ln A = 0.1365 E_a - 1.4102$. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3675–3679, 2007

Key words: thermal degradation; kinetics; poly(*p*-phenylene benzobisoxazole); thermogravimetric analysis; mechanism function

been advanced that which mechanism function is the most probable one.

In this article, the thermal degradation kinetics of PBO was studied by TG/DTG measurements under dynamic nitrogen at different heating rates. The apparent activation energies were evaluated by Kissinger Method¹⁰ and Flynn-Wall-Ozawa (F-W-O) Method,¹¹ and the most probable mechanism function was determined using Coat-Redfern Method.¹²

KINETICS METHOD

Calculation of activation energy E_a

In nonisothermal kinetics theory, thermal degradation of PBO can be expressed by the following function:

$$\frac{d\alpha}{dt} = Ae^{E_{a}/RT}f(\alpha) \tag{1}$$

where α is the conversion degree, *A* is the pre-exponential factor, *E*_a is the activation energy, *R* is the general gas constant, and *f*(α) is the differential expression of a kinetic mechanism function. If β is the constant heating rate: $dT = \beta dt$, the eq. (1) can be deduced as follows:

$$\frac{d\alpha}{dt} = \frac{A}{\beta} e^{-E_{a}/RT} f(\alpha)$$
(2)

Furthermore, the integral expression of a kinetic model function $G(\alpha)$ can be derived from eq. (2):

$$G(\alpha) = \int_0^{\alpha} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_0^T e^{-E_{\alpha}/RT} dT$$
(3)

Contract grant sponsor: Development Project of Shanghai Priority Academic Discipline.

Figure 1 Repeat unit of PBO molecule.

Kissinger method

The activation energy can be calculated by the Kissinger method without precise knowledge of the reaction mechanism using following equation deduced from taking logarithms of the differentiation of eq. (2):¹⁰

$$\ln\frac{\beta}{T_{\rm p}^2} = \ln\left(\frac{RA}{E_{\rm a}}\right) - \frac{E_{\rm a}}{RT_{\rm p}} \tag{4}$$

where $T_{\rm p}$ is the temperature of the peak point of the DTG curve, which corresponds to the maximum reaction rate. The activation energy can be determined from the slope obtained by linear regression of the plot of $\ln(\beta/T_{\rm p}^2)$ versus $\frac{1}{T_{\rm p}}$.

Flynn-Wall-Ozawa method

The eq. (3) was integrated by the Doyle approximation, and the result taken logarithms:¹¹

$$\lg \beta = \lg \frac{AE_{a}}{RG(\alpha)} - 2.315 - 0.4567 \frac{E_{a}}{RT}$$
(5)

The activation energies for different conversion values can be calculated from the slopes of 1g β versus 1/T plots. This method is one of the integral methods that can estimate the activation energy without the knowledge of reaction order and mechanism; hence, it has been widely used for validating other methods.

Determination of the most probable mechanism function

Coats-Redfern method

By rearranging eq. (2) and integrating both sides of it,¹² the following equation will be obtained:

$$\ln\left[\frac{G(\alpha)}{T^2}\right] = \ln\left(\frac{AR}{\beta E_a}\right) - \frac{E_a}{RT}$$
(6)

The value of E_a and ln *A* can be calculated from the slope and intercept of the linear least-square plots of $\ln[G(\alpha)/T^2]$ versus 1/T respectively.

Estimation of the most probable mechanism function

By substituting the basic values of α obtained by TG curves, the 41 mechanism functions¹³ and the corresponding values of *T* are put into eq. (6) respectively.

The kinetic parameters E_a and ln A will be calculated. Finally, we can determine the most probable mechanism function when the mean value of kinetics parameter above is most similar to the mean value of F-W-O Method.

EXPERIMENTAL

The PBO polymers with high molecular weight used for the study were prepared from 4,6-diaminoresorcinol salts and terephthalic acid in polyphosphoric acid by a solution polycondensation under inert gas. The samples were washed with water in a Soxhlet extractor for 12 h to remove residual polyphosphoric acid and dried in a high vacuum oven before further analysis. The TG/DTG measurements were carried out on a DuPont 1090B Thermalgravimetric Analyzer in dynamic nitrogen environment from 30 to 900°C. Flow rate was fixed at 50 mL/min and the size of purified PBO granule sample was about 10 mg. The kinetics experiments were performed at several heating rates of 5, 10, 15, and 20°C/min respectively.

RESULTS AND DISCUSSION

Thermal degradation of PBO

Figure 2 shows the TG and DTG curves of PBO degradation in nitrogen at different heating rates. And the TG characteristic temperatures of PBO degradation at different heating rates are illustrated in Table I.

The Figure 2 and Table I showed that PBO polymers stabled up 600°C approximately and the characteristic temperatures increased with increase of heating rate, at the end of the degradation almost 65–70% residual remained. The results revealed that PBO polymers had very excellent thermal stability.

Figure 2 The TG and DTG curves of PBO degradation in nitrogen.

T_{i} (°C)	$T_{\rm p}$ (°C)	$T_{\rm d},5\%~(^{\circ}{\rm C})$	<i>T</i> _d , 10% (°C)
596	690	661	679
617	706	676	694
620	712	681	701
628	721	693	711
	<i>T</i> _i (°C) 596 617 620 628	$\begin{array}{c c} T_{i}(^{\circ}C) & T_{p}(^{\circ}C) \\ \hline 596 & 690 \\ 617 & 706 \\ 620 & 712 \\ 628 & 721 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE I The Characteristic Temperatures of PBO Degradation at Different Heating Rates

 $T_{i\nu}$ onset temperature of TG; $T_{p\nu}$ peak temperature of DTG; $T_{d\nu}$ decomposition temperature of loss 5% or 10% of the sample weight.

Kinetics of thermal degradation of PBO

Calculation of activation energy E_{a}

As shown in Figure 3, the Kissinger plot of $\ln(\beta/T_p^2)$ versus $1/T_p$ of PBO degradation fitted linearly. The value of activation energy $E_{a(K)}$ of PBO degradation calculated from the slope, which corresponding to the maximum degradation rate, is 352.19 kJ/mol. The preexponential factor ln $A_{(K)}$ obtained from the intercept is 42.49, and the correlation coefficient *R* is 0.9945.

By using F-W-O Method, the basic parameters β and the temperature of TG curve corresponding to the difference conversions were introduced into eq. (5), the plots of 1g β versus 1/*T* are illustrated in Figure 4. The values of $E_{a(O)}$ of PBO degradation at different conversions are shown in Table II, all correlation coefficients *R* are more than 0.98. From the table, the highest $E_{a(O)}$ (356.55 kJ/mol) appears at the conversion of 20%, which closes to the value of $E_{a(K)}$, and the mean value of $\overline{E}_{a(O)}$ is 338.32 kJ/mol.

The calculation of F-W-O Method is applicable to all points on the TG curve, and Kissinger Method uses only one point, which is the primary different between these two methods. Comparing values of E_a obtained from the above two methods, a relative error valued 3.9% indicates that it is reasonable to calculate

activation energy of PBO degradation using these two methods. And it is obviously that the actual values of activation energy are dependent not only on the mathematical measurements used to evaluate the data, but also upon such factors as sample mass, sample size, flow rate, and so on.

Determination of the most probable mechanism function

Combined with 41 types of mechanism functions,¹³ the corresponding values of E_{a} , ln A, and the correlation coefficient R obtained by Coats-Redfern Method were calculated (Table III), meanwhile the values of $\overline{E}_{a(O)}$ determined by F-W-O Method was used to restrict the results given above. When the kinetic parameters of Coats-Redfern Method was similar to that defined by F-W-O Method, at the same time the correlation coefficient R was better, the most probable mechanism function could be determined.

Comparing with the values of $\overline{E}_{a(O)}$ provided by F-W-O Method, it is obviously that the values of kinetic parameters of Model No. 26 is most similar to the apparent value. Consequently, the most probable mechanism function of PBO degradation follows Mampel Power function, which obeys the models that are random scission of weak bonds of PBO molecule and impact of the active groups obtained from the broken bonds. The integral form of the above mechanism is $G(\alpha) = \alpha^{3/2}$ (n = 3/2), and the differential form is $f(\alpha) = \frac{2}{2} \alpha^{-1/2}$. The mechanism of this function means that PBO degradation happens at some parts of the backbone of the PBO chains, and the active groups generate randomly, some of these active groups goes on decomposition or losses activity, others generates new active groups. This conclusion reveals an extraordinary similarity to the report of So et al.,⁶ which showed that there were two path-

Figure 3 The Kissinger plot of PBO degradation.

Figure 4 The Flynn-Wall-Ozawa plots of PBO degradation at different conversions.

Journal of Applied Polymer Science DOI 10.1002/app

TABLE IIThe Values of E_a of PBO Degradation Obtained from F-W-O Method

α (%)	4	8	12	16	20	24
E _a (kJ/mol)	313.82	325.47	341.68	347.88	356.55	344.49
R	0.9828	0.9934	0.9966	0.9967	0.9929	0.9861

ways for the thermal degradation of PBO polymers. One is the homolytic bond scission to generate a benzoxazole radical and a phenyl radical, and the other is decomposition of a heterocyclic ring to give a nitrile, which generates benzonitrile, dicyanobenzene, and an unstable diradical. Both these two modes are all predicated to the random scission of weak bonds. And then, the follow steps of first pathway are that

TABLE III The Mean Values of Kinetics Parameters of PBO Degradation

1 463.42 52.42 0.9883 2 473.34 53.02 0.9889 3 107.49 9.96 0.9866 4 478.49 53 0.9893 5 108.77 9.93 0.9873 6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9888 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9733 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9848 36 233.71 24.51 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9847 34 195.47 21.62 <td< th=""><th>No.</th><th>$E_{\rm a}$ (kJ/mol)</th><th>$\ln A (A, s^{-1})$</th><th>R</th></td<>	No.	$E_{\rm a}$ (kJ/mol)	$\ln A (A, s^{-1})$	R
2 473.34 53.02 0.9889 3 107.49 9.96 0.9866 4 478.49 53 0.9893 5 108.77 9.93 0.987 6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9888 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9902 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9882 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9888 30 233.71 24.51 0.9888 31 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9885 33 209.15 23.04 <td< td=""><td>1</td><td>463.42</td><td>52.42</td><td>0.9883</td></td<>	1	463.42	52.42	0.9883
3 107.49 9.96 0.9866 4 478.49 53 0.9833 5 108.77 9.93 0.987 6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9888 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 16 238.89 26.29 0.9902 19 749.03 86.2 0.9902 19 749.03 86.2 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.9888 31 231.16 24.57 0.9888 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9885 33 209.15 23.04 0.98819 <td>2</td> <td>473.34</td> <td>53.02</td> <td>0.9889</td>	2	473.34	53.02	0.9889
4 478.49 53 0.9893 5 108.77 9.93 0.987 6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9892 18 493.96 56.4 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 30 233.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9885 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 $0.$	3	107.49	9.96	0.9866
5 108.77 9.93 0.987 6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 30 233.71 24.51 0.9888 31 231.16 24.57 0.9885 32 231.16 24.57 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9813 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.411 0.9912 38veveveve40veveveve <td>4</td> <td>478.49</td> <td>53</td> <td>0.9893</td>	4	478.49	53	0.9893
6 483.6 52.85 0.9896 7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9885 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 30 233.71 24.51 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38veveve <td>5</td> <td>108.77</td> <td>9.93</td> <td>0.987</td>	5	108.77	9.93	0.987
7 476.76 51.96 0.9892 8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9869 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 30 233.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38veveve39veveve40veveve41 46.48 <	6	483.6	52.85	0.9896
8 447.15 48.09 0.9873 9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9871 14 153.87 16.06 0.9887 15 175.12 18.63 0.9891 16 238.89 26.29 0.98951 17 366.42 41.41 0.98921 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9883 25 223.62 24.27 0.9884 26 343.52 38.41 0.9888 27 463.42 52.42 0.9883 28 235 24.39 0.988 29 233.71 24.51 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve ve 39 veveve	7	476.76	51.96	0.9892
9 504.49 55.57 0.9907 10 47.59 2.64 0.9832 11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9802 18 493.96 56.4 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9888 30 233.71 24.51 0.9888 31 231.16 25.27 0.9888 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38veveveve39veveve40veveve41 <td>8</td> <td>447.15</td> <td>48.09</td> <td>0.9873</td>	8	447.15	48.09	0.9873
10 47.59 2.64 0.9832 11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 233.71 24.51 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 40 veve	9	504.49	55.57	0.9907
11 68.85 5.46 0.9858 12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9888 30 23.71 24.51 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve ve ve 38veveve ve 40veveve ve 41 46.48 3.3 0.965	10	47.59	2.64	0.9832
12 85.85 7.64 0.9869 13 111.36 10.84 0.9878 14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9888 27 463.42 52.42 0.9888 28 235 24.39 0.9899 29 233.71 24.51 0.9888 31 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 40 veveve	11	68.85	5.46	0.9858
13111.3610.840.987814153.8716.060.988715175.1218.630.98916238.8926.290.989517366.4241.410.989918493.9656.40.900219749.0386.20.9904201004.09115.870.990521veveve2243.772.070.97932363.764.730.982724103.729.790.985325223.6224.270.987426343.5238.410.98827463.4252.420.98882823524.390.9892923.7124.510.98883023.7125.60.988831231.1625.270.988533209.1523.040.984934195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve40veveve4146.483.30.965	12	85.85	7.64	0.9869
14 153.87 16.06 0.9887 15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 40 veveve	13	111.36	10.84	0.9878
15 175.12 18.63 0.989 16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	14	153.87	16.06	0.9887
16 238.89 26.29 0.9895 17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	15	175.12	18.63	0.989
17 366.42 41.41 0.9899 18 493.96 56.4 0.9002 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	16	238.89	26.29	0.9895
18 493.96 56.4 0.9902 19 749.03 86.2 0.9904 20 1004.09 115.87 0.9905 21 veveve 22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.97821 36 15.15 ve 0.9244 47 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	17	366.42	41.41	0.9899
19749.03 86.2 0.9904 201004.09115.87 0.9905 21veveve22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 23.71 24.51 0.9888 30 23.71 25.6 0.9888 31 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9724 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38veveve40veveve41 46.48 3.3 0.965	18	493.96	56.4	0.9902
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	749.03	86.2	0.9904
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1004.09	115.87	0.9905
22 43.77 2.07 0.9793 23 63.76 4.73 0.9827 24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 233.71 24.51 0.9888 30 233.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	21	ve	ve	ve
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	43.77	2.07	0.9793
24 103.72 9.79 0.9853 25 223.62 24.27 0.9874 26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 233.71 24.51 0.9888 30 233.71 25.6 0.9888 31 231.16 25.27 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	23	63.76	4.73	0.9827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	103.72	9.79	0.9853
26 343.52 38.41 0.988 27 463.42 52.42 0.9883 28 235 24.39 0.989 29 233.71 24.51 0.9888 30 233.71 25.6 0.9888 31 231.16 24.57 0.9885 32 231.16 25.27 0.9885 33 209.15 23.04 0.9849 34 195.47 21.62 0.9821 35 182.55 20.18 0.9787 36 15.15 ve 0.9244 37 254.95 28.41 0.9912 38 veveve 40 veveve 40 veveve 41 46.48 3.3 0.965	25	223.62	24.27	0.9874
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	343.52	38.41	0.988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	463.42	52.42	0.9883
29233.7124.510.988830233.7125.60.988831231.1624.570.988532231.1625.270.988533209.1523.040.984934195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve40veveve4146.483.30.965	28	235	24.39	0.989
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	233.71	24.51	0.9888
31231.1624.570.988532231.1625.270.988533209.1523.040.984934195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	30	233.71	25.6	0.9888
32231.1625.270.988533209.1523.040.984934195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	31	231.16	24.57	0.9885
33209.1523.040.984934195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	32	231.16	25.27	0.9885
34195.4721.620.982135182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	33	209.15	23.04	0.9849
35182.5520.180.97873615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	34	195.47	21.62	0.9821
3615.15ve0.924437254.9528.410.991238veveve39veveve40veveve4146.483.30.965	35	182.55	20.18	0.9787
37254.9528.410.991238veveve39veveve40veveve4146.483.30.965	36	15.15	ve	0.9244
38 ve ve ve 39 ve ve ve 40 ve ve ve 41 46.48 3.3 0.965	37	254.95	28.41	0.9912
39 ve ve ve 40 ve ve ve 41 46.48 3.3 0.965	38	ve	ve	ve
40 ve ve ve 41 46.48 3.3 0.965	39	ve	ve	ve
41 46.48 3.3 0.965	40	ve	ve	ve
	41	46.48	3.3	0.965

ve means negative.

the benzoxazole radical decomposes to produce aromatic nitrile along with H₂O, CO₂, and other carbon compounds, and the phenyl radical grafts onto another PBO molecule or abstracts hydrogen to generate phenylbenzobisoxazole, which produces benzonitrile and benzene. And the follow step of second pathway is the decomposition of diradical fragments to produce aromatic nitrile along with H₂O, CO₂, and other carbon compounds. All these steps are predicated to the impact of the active groups obtained from the broken bonds.

Kinetic compensation effect of the nonisothermal degradation

To investigate the correlation between E_a and $\ln A$, the kinetic compensation effect needs to be advanced as follow:

$$\ln A = aE_{\rm a} + b \tag{7}$$

where *a* and *b* are compensation coefficients. By putting $G(\alpha) = \alpha^{3/2}$ into F-W-O equation [eq. (5)], the plot of ln $A_{(O)}$ versus $E_{a(O)}$ of F-W-O Method showed in Figure 5 was fitted linearly. The expression of kinetic compensation effect of PBO degradation was provided that ln $A = 0.1365 E_a - 1.4102$, and the correlation coefficient *R* is 0.9989. Thus it can be seen that, there is an interdependent and coordinated relationship between ln *A* and E_a . On the other hand, because the situations of experiment are effectless to them, the compensation coefficients used to describe the charac-

Figure 5 The kinetic compensation effect of PBO degradation.

terization of degradation are more effective on demonstrating the interrelation between the kinetic parameters $\ln A$ and E_a of thermal degradation.

CONCLUSIONS

TG/DTG measurements were used to investigate the kinetics of PBO thermal degradation. The activation energy calculated by Kissinger Method was 352.19 kJ/ mol, and the mean value of activation energies evaluated by Flynn-Wall-Ozawa Method was 338.32 kJ/ mol. The degradation kinetic model of PBO followed the mechanism of random scission of weak bonds of PBO molecule and impact of the active groups obtained from the broken bonds, Mampel Power equation with integral form $G(\alpha) = \alpha^{3/2}$ and differential form $f(\alpha) = \frac{2}{3}\alpha^{-1/2}$. And the mathematical equation of kinetic compensation effect was ln $A = 0.1365 E_{\rm a} - 1.4102$.

References

- 1. Hu, X. D.; Jenkins, S. E.; Min, B. G.; et al. Macromol Mater Eng 2003, 288, 823.
- Zylon[®] (PBO Fiber) Technical Information. Osaka: Toyobo Co., Ltd. 2001.
- 3. Krause, S. J.; Haddock, T. B.; Vezie, D. L.; et al. Polymer 1988, 29, 1354.
- Kitagawa, T.; Yabuki, K.; Young, R. J. J Macromol Sci Phys 2002, 41, 61.
- 5. Bourbigot, S.; Flambard, X.; Poutch, F. Polym Degrad Stab 2001, 74, 283.
- So, Y. H.; Froelicher, S. W.; Kaliszewski, B.; et al. Macromolecules 1999, 32, 6565.
- 7. Wolfe, J. F.; Arnold, F. E. Macromolecules 1981, 14, 909.
- 8. Wu, Z.; Li, F.; Huang, L.; et al. J Therm Anal Calorim 2000, 59, 361.
- 9. Martinez, K. T.; Rodil, S. V.; Paredes, J. I.; et al. Chem Mater 2003, 15, 4052.
- 10. Kissinger, H. E. Anal Chem 1957, 29, 1702.
- 11. Ozawa, T. Bull Chem Soc Jpn 1965, 38, 1881.
- 12. Coats, A. W.; Redfern, J. P. Nature (London) 1964, 201, 68.
- Hu, R. Z.; Shi, Q. Z. Eds.; Thermal Analysis Kinetics; Science Press: Beijing, China, 2001; p 127.